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Abstract: We study (3+1)-dimensional N = 4 supersymmetric Yang-Mills theory on a

spatial three-torus. The low energy spectrum consists of a number of continua of states

of arbitrarily low energies. Although the theory has no mass-gap, it appears that the

dimensions and discrete abelian magnetic and electric ’t Hooft fluxes of the continua are

computable in a semi-classical approximation. The wave-functions of the low-energy states

are supported on submanifolds of the moduli space of flat connections, at which various

subgroups of the gauge group are left unbroken. The field theory degrees of freedom

transverse to such a submanifold are approximated by supersymmetric matrix quantum

mechanics with 16 supercharges, based on the semi-simple part of this unbroken group.

Conjectures about the number of normalizable bound states at threshold in the latter theory

play a crucial role in our analysis. In this way, we compute the low-energy spectra in the

cases where the simply connected cover of the gauge group is given by SU(n), Spin(2n+1)

or Sp(2n). We then show that the constraints of S-duality are obeyed for unique values

of the number of bound states in the matrix quantum mechanics. In the cases based on

Spin(2n+1) and Sp(2n), the proof involves surprisingly subtle combinatorial identities,

which hint at a rich underlying structure.
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1. Introduction

An N = 4 supersymmetric (3 + 1)-dimensional Yang-Mills theory is completely character-

ized by a gauge group G and a value of the complex parameter

τ =
θ

2π
+

i

g2
, (1.1)

where θ is the theta angle and g is the coupling constant. The S-duality conjecture [1, 2]

states that this characterization is somewhat redundant: The transformations

S : (G, τ) 7→ (G∨,−1/τ)

T : (G, τ) 7→ (G, τ + 1) , (1.2)

both give theories equivalent to the original one. (These expressions are true for simply

laced groups. For non-simply-laced cases the situation is more complicated; see e.g. [3] for
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a recent discussion.) Here G∨ denotes the GNO or Langlands dual group of G [4]. Some

examples of such dualities, that will be studied further in this paper, are:

G G∨ C

SU(n) SU(n)/Zn Zn

Spin(2n+1) Sp(2n)/Z2 Z2

Sp(2n) Spin(2n+1)/Z2 Z2 .

(1.3)

Here C denotes the center of the simply connected group G (which is isomorphic to the

center of the universal covering group of G∨). Whereas the transformation T is manifest

in the usual formalism of Yang-Mills theory, the transformation S is still rather mysterious

(although by now very well established). The object of the present paper is to give further

evidence for it, which we hope could be useful for elucidating its deeper meaning.

We will compare the theories with gauge groups G and G∨ on a space-time of the form

R × T 3, where the first factor represents time and the second factor is a three-torus with

a flat metric. The states of the theory are then characterized by two discrete quantum

numbers

m ∈ M ≃ H2(T 3, C) ≃ C3

e ∈ E ≃ H1(T 3, C) ≃ C3. (1.4)

The discrete abelian magnetic ’t Hooft flux m characterizes the topological class of a

gauge bundle over T 3. The discrete abelian electric ’t Hooft flux e characterizes together

with the vacuum angle θ the transformation properties of the state under ”large” gauge

transformations with a non-trivial winding in the gauge group [5]; the former is related

to winding around a closed curve in the base manifold, whereas the latter is related to

winding over a three-sphere. In a theory with a simply connected gauge group G, all states

have m = 0 but e may take arbitrary values. The gauge group G∨ of the dual theory

is then ”of adjoint form”, and all states have e = 0 while m may take arbitrary values.

Intermediate cases, where the gauge group is neither simply connected nor of the adjoint

form, give other restrictions on m and e. We will be slightly more general, and consider

all combinations of m and e, although some of them seemingly cannot appear in a gauge

theory. S-duality then acts according to

S : (m, e) 7→ (e,−m)

T : (m, e) 7→ (m, e + ∆), (1.5)

where the “spectral flow” ∆ depends on m but not on e. These matters are explained in

more detail in section two.

In general, the predictions of S-duality are difficult to verify, since they relate a weakly

coupled theory, in which many quantities are computable in a semi-classical approximation,

to a strongly coupled theory, where most quantities are beyond reach. An exception are

quantities that are invariant under continuous deformations of the coupling constant, and

therefore may be followed in an interpolation between the two regimes. The prototype of

such a quantity is the Witten index in a supersymmetric theory with a mass gap, i.e. the
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number of bosonic minus the number of fermionic states of zero energy [6]. The case of

N = 4 supersymmetric Yang-Mills theory on T 3 does not fulfill the standard requirements

for this theorem: Supersymmetry ensures that the energy spectrum is non-negative, but

there is no mass gap, so the low energy spectrum will consist of continua of non-normalizable

states with arbitrarily low energies. Such a continuum is characterized by its dimension

d (i.e. the number of continuous parameters needed to label the states) and the discrete

quantum numbers m and e introduced in the previous paragraph. (Continua of dimension

zero do correspond to normalizable zero energy states.) A priori, it is not clear that this

low energy spectrum is invariant under continuous deformations of τ and the parameters

describing the flat metric on T 3. However, our results lend strong support to the conjecture

that this is indeed the case. It would be interesting to try to find a more rigorous proof of

this invariance.

Assuming that the low-energy spectrum is invariant under continuous deformations of

the theory, it may be computed semi-classically at weak coupling. This is explained for

an arbitrary gauge group G in section three. The main point is that the wave-function of

a low energy state is localized at connections with vanishing curvature on a principal G

bundle over the spatial T 3. The structure of the moduli spaces of such flat connections is

known for all simple groups [7 – 9]. We take this analysis one step further, by studying the

submanifolds of these moduli spaces at which various subgroups H of G are left unbroken.

The abelian factors of H determine the dimensions of the continua of states with wave-

functions localized on these submanifolds. The semi-simple factors of H determine the

number of continua as follows: The field theory degrees of freedom transverse to such a

submanifold may be modelled by matrix quantum mechanics with sixteen supercharges

based on these semi-simple factors. (This is the theory obtained by dimensional reduction

of N = 4 supersymmetric Yang-Mills theory in 3+1 dimensions to 0+1 dimensions.) This

version of quantum mechanics is believed to have a number (depending on the group) of

normalizable zero-energy bound states at threshold. (It should be noted, however, that

these states have not yet been rigorously constructed.) In this way, one may determine

the low energy spectrum for any gauge group G. As explained above, it consists of a set

of continua of states, characterized by their dimensions d and the ’t Hooft fluxes m and e.

The S-duality of this spectrum is by no means obvious, though.

In the last two sections, we consider two classes of specific examples, for which we

compute the low-energy spectrum and verify that it satisfies the constraints of S-duality.

Section four is concerned with the G = SU(n) case. The Lie algebra of a possible invariant

subgroup H is then given by a sum of abelian terms and su(k) terms. There are strong

reasons to believe that su(k) matrix quantum mechanics has precisely one normalizable

state. (This was first predicted on the basis of the duality between type IIA string theory

and M -theory [10].) It is then not difficult to compute the low-energy spectrum and verify

its S-duality. (One can also run this argument in reverse: assuming S-duality uniquely

fixes the number of bound states in su(k) matrix quantum mechanics to be precisely one.)

In section five, we consider the cases G = Spin(2n + 1) and G = Sp(2n). The Lie

algebras of the possible unbroken subgroups H may then contain so(k) and sp(2k) terms.

Here, there are no well-established predictions for the number of normalizable states in
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the matrix quantum mechanics. However, a mass deformed version of N = 4 Yang-Mills

field theory, known as the N = 1∗ theory, has a mass gap and a number of vacuum states

which is computable. Assuming that the number of bound states in the matrix quantum

mechanics can be extracted by taking the massless limit of the N = 1∗ theories, one is then

lead to the conjecture that the number of normalizable bound states at threshold in so(k) or

sp(2k) matrix quantum mechanics is related to certain integer partitions [11]. Our general

methods allow for a determination of the low energy spectrum of the G = Spin(2n+1)

and G = Sp(2n) N = 4 theories on T 3. It turns out to be easier to describe the results

for all values of n simultaneously, rather than studying a specific group. Provided that

the conjecture given in [11] for the number of normalizable bound states at threshold in

matrix quantum mechanics is true, the predictions of S-duality are fulfilled in a surprisingly

subtle and intriguing way, with combinatorial identities like Jacobi’s aequatio identica satis

abstrusa making an unexpected appearance. Again, the argument can be reversed, showing

that the conjectures in [11] for the number of bound states are the unique choices consistent

with S-duality.

Our results can be interpreted in different ways. One viewpoint is that they shed light

on the intriguing relationships between three unproven (but at this time rather uncon-

troversial hypotheses): The presumed coupling constant independence of the low-energy

spectrum, the question of normalizable states in matrix quantum mechanics, and S-duality.

Concerning possible generalizations of these results, one would of course like to find a uni-

fied description valid for all gauge groups G. An obvious first step, which is currently under

investigation and on which we hope to report on in the near future, concerns the remaining

cases with a simply laced gauge group, i.e. G = Spin(2n) and G = E6,7,8. Hopefully, this

can be helpful for understanding the structures underlying the N = 4 theories, e.g. a for-

mulation in terms of a (5+1)-dimensional (2, 0) theory considered on T 5 ≃ T 2×T 3, where

the geometry of the first factor is related to the parameter τ (1.1). The results reported

in this paper give us good hope that it should be possible to make further progress along

these lines.

We should perhaps also point out that S-duality of the N = 4 super-Yang-Mills theory

on R×T 3 has been studied before in the literature in the context of (M)atrix theory (see

e.g. [12]). However, these studies focus on different aspects: BPS states, rather than low-

energy states are studied, and the gauge group is U(N), rather than SU(N).

2. ’t Hooft fluxes in non-abelian Yang-Mills theory

In this section, we will review some algebraic topology aspects of principal Gadj bundles

over a three-dimensional compact base space B. Here Gadj = G/C is the adjoint form

of a simply connected compact Lie group G with center subgroup C. Readers who are

less interested in the formal aspects may skip this section without much harm; the most

relevant results were summarized in the introduction. A useful reference for this section

is [13].
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2.1 The discrete abelian magnetic flux

For G a simply connected compact Lie group with center C, the first few homotopy groups

of the quotient group Gadj = G/C are given by

πi(Gadj) ≃







0, i = 0

C, i = 1

0, i = 2

Z, i = 3 .

(2.1)

It follows that an isomorphism class of a principal Gadj bundle P over a compact base space

B of dimension less than or equal to four is completely determined by the Stiefel-Whitney

class (discrete abelian magnetic ’t Hooft flux)

m = w2(P ) ∈ M = H2(B,π1(Gadj)) , (2.2)

and the Chern class (instanton number)

k = c2(P ) ∈ H4(B, Q) . (2.3)

(Of course, m or k are trivial if the dimension of B is less than two or four respectively.) In

higher dimensions, there are further invariants, but they will not be needed in the present

paper. The classes m and k are not independent: For example, if the center is a cyclic

group C ≃ Zn, we have that

k −
1

2

(

1 −
1

n

)

m̄ ∪ m̄ ∈ H4(B, Z) (2.4)

where m̄ ∈ H2(B, Z) is a lifting of m. (This actually covers all cases, except G ≃ Spin(4k)

for which C ≃ Z2 × Z2.)

2.2 The discrete abelian electric flux

Let P be a principal Gadj = G/C bundle over a three-dimensional compact base space B.

Let G denote the group of bundle automorphisms of P (gauge transformations), and let

G0 denote the connected component of the identity. It follows from a canonical analysis

that physical states must be invariant under G0, since the generator of infinitesimal such

transformations is weakly zero. But a physical state may transform non-trivially under the

discrete abelian quotient group

Ω̃ = G/G0 , (2.5)

of “large” bundle automorphisms. The transformation properties under this group is given

by a character

ẽ ∈ Ẽ = Hom(Ω̃, U(1)). (2.6)

To describe the structure of the groups Ω̃ and Ẽ, we let

Ω = Hom(π1(B), π1(Gadj)) (2.7)
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and define the map r : Ω̃ → Ω by restricting a bundle automorphism of P to closed

curves in B. (Note that the restriction of P over such a curve is a trivial bundle.) We

wish to determine the kernel Ω0 ⊂ Ω̃ of the map r. To this end, we note that a bundle

automorphism of P whose restriction to closed curves in B is continuously connected to the

identity, may be continuously deformed to a bundle automorphism with support in a small

open three-disc D in B. Since the restriction of P to D is trivial, such an automorphism is

given by a map from a three-sphere S3 (the closure of the disc D with all boundary points

identified) to the gauge group Gadj. The group of homotopy classes of such maps can thus

be identified with the kernel of r, i.e.

Ω0 ≃ π3(Gadj) ≃ Z. (2.8)

The group Ω̃ is thus an extension of Ω by Ω0:

0 → Ω0
i
→ Ω̃

r
→ Ω → 0. (2.9)

We wish to describe this extension more precisely. An arbitrary element ω̃ ∈ Ω̃ is mapped

by r to an element ω ∈ Ω of some finite order s. Exactness of the above sequence then

implies that

(ω̃)s = (Υ)k, (2.10)

where Υ is the generator of Ω0 and k is an integer. The integer k may be determined

modulo s as follows: We construct two principal Gadj bundles Pω̃ and PΥ over an auxiliary

four-dimensional space Y = S1 × B by first extending P over I × B and then identifying

the ends of the interval I to obtain S1 with a twist by ω̃ and Υ respectively. The Chern

classes of theses bundles are related as

sc2(Pω̃) = kc2(PΥ). (2.11)

But c2(PΥ) = 1 (where we have identified H4(S1×B, Q) ≃ Q), and c2(Pω̃) is determined

modulo 1 by the Stiefel-Whitney class w2(Pω̃). (See (2.4) for the case when C ≃ Zn.)

Finally, the latter class is determined by its restriction to B, which is given by w2(P ), and

its restrictions to S1 × c for an arbitrary loop c in B, which are determined by ω ∈ Ω.

These considerations thus determine the integer k modulo the order s of ω ∈ Ω. Note that

k modulo s only depends on the image ω of ω̃.

Finally, we will describe the relationship between characters of the groups Ω0, Ω̃, and

Ω. We begin by defining the “spectral flow” character

∆ ∈ E = Hom(Ω, U(1)) (2.12)

by evaluating it for an arbitrary element ω ∈ Ω:

∆(ω) = exp(−2πik/s), (2.13)

where s is the order of ω and the integer k is determined modulo s as described in the

previous paragraph. A character ẽ of the group Ω̃ now determines a character e0 of the

group Ω0

e0 ∈ Hom(Ω0, U(1)) ≃ U(1) (2.14)

– 6 –
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and a character e of the group Ω defined modulo the spectral flow ∆, i.e. an equivalence

class

[e] ∈ E mod ∆. (2.15)

The character e0 is given by the restriction of ẽ from Ω̃ to the subgroup Ω0. It is determined

by the ”vacuum angle” θ defined modulo 2π according to

e0(Υ) = ẽ(Υ) = exp(iθ), (2.16)

where Υ is the generator of Ω0. The character e is defined by evaluating it for an arbitrary

element ω ∈ Ω:

e(ω) = ẽ(ω̃) exp(−iθk/s). (2.17)

Here s is the order of ω, ω̃ is a lifting of ω to Ω̃, and the integer k is defined by (2.10).

This is independent of the choice of ω̃. However, since θ is only defined modulo 2π, only

the class [e] of e modulo the spectral flow ∆ is really well defined.

2.3 The action of S-duality

Physical states are thus characterized by the vacuum angle θ and the ’t Hooft fluxes m ∈ M

and [e] ∈ E mod ∆. The groups E and M are (canonically) isomorphic:

M ≃ E ≃ (C)b1(B), (2.18)

where b1(B) is the first Betti number of B. If we choose a representative e ∈ E of [e], we

have seen that the T -transformation θ → θ + 2π acts as

(m, e) → (m, e + ∆) . (2.19)

The S transformation amounts to the interchange of E and M , in the sense that

(e,m) → (m,−e) . (2.20)

In this paper, the base manifold is B = T 3 so that b1(B) = 3. With respect to a basis

(c1, c2, c3) of one-cycles of B, the ’t Hooft fluxes then amount to two triples of elements of

C:

m = (m23,m31,m12) ∈ C3

e = (e1, e2, e3) ∈ C3. (2.21)

In an additive notation, these triples transform linearly under the SL(3, Z) mapping class

group of T 3. If C ≃ Zn, this means that m is related by an SL(3, Z) transformation to

(0, 0, u), where u = gcd(m23,m31,m12, n) is the greatest common divisor of m23, m31, m12,

and n. (Alternatively, one could put e in this form, but in general not both m and e

simultaneously.)
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3. The low energy effective theory

In this section, we will describe how to compute the low energy spectrum for an arbitrary

gauge group of the form Gadj = G/C, where G is a simply connected compact Lie group

with center C.

At weak coupling, i.e. g ≪ 1, the N = 4 Yang-Mills theory is a perturbative quantum

field theory with the following fundamental fields: A bosonic connection A on a principal

Gadj-bundle P over space-time, a bosonic section Φ of the associated bundle ad(P ), and

fermionic sections Ψ± of the associated bundles ad(P ) ⊗ S±, where S± are the positive

and negative chirality spinor bundles over space-time. In addition to its gauge and space-

time symmetries, the theory is invariant under a global SU(4) ≃ Spin(6) R-symmetry,

which commutes with S-duality. The fields A, Φ, Ψ+, and Ψ− transform as 1, 6, 4, and

4̄ respectively under R-symmetry. We will work in a Hamiltonian formalism in temporal

gauge, i.e. with the time-component of the gauge field put to zero. The above fields can

then be viewed as sections of bundles over the spatial three-manifold B = T 3.

By supersymmetry, the spectrum of the Hamiltonian is bounded from below by zero. In

general, the precise spectrum depends on the continuous parameters of the theory, e.g. the

coupling constant g, the theta angle, and the parameters describing the flat metric on T 3.

But one could hope that the spectrum at arbitrarily low energies should be invariant under

smooth deformations of the theory. This is well established for theories with a discrete

spectrum below a finite energy gap, but it seems to be true also in the case at hand, where

we have continua of states of various dimensions extending down to zero energy. (We

consider normalizable states of precisely zero energy as zero-dimensional continua.)

Our aim is to compute the quantum numbers of this low-energy spectrum, in particular

the ’t Hooft fluxes m ∈ M ≃ C3 and e ∈ E ≃ C3. The Hamiltonian of the theory is a sum

of manifestly non-negative terms, all of which must thus be arbitrarily small for the states

under consideration. We will consider each of these terms separately.

3.1 The magnetic energy

We consider a principal Gadj bundle P over T 3 with connection A. The magnetic contri-

bution to the energy is proportional to tr(BiBi), where Bi = ǫijkFjk is given by the spatial

components of the curvature F = dA+A∧A = Fjkdxj ∧ dxk. A flat connection, for which

F = 0, is completely described by the holonomies

U ′
i = P exp

∫

ci

A , (3.1)

where ci, i = 1, 2, 3 are curves that start and end at a common base-point and whose

homotopy classes generate π1(T
3) ≃ Z3. The holonomies U ′

i are commuting elements of

Gadj. They may be lifted to elements Ui of G obeying the commutation relations

UiUj = mijUjUi , (3.2)

where we have identified the components mij = m−1
ji , of the discrete abelian magnetic flux

m = (m23,m31,m12) of the bundle P with elements of C.

– 8 –
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A gauge transformation (bundle automorphism) acts on the holonomies by conjugation:

Ui → gUig
−1, (3.3)

where g ∈ G is the parameter of the transformation restricted to the basepoint of the

curves ci. For a given m ∈ M , there is a moduli space M(m) of gauge inequivalent triplets

U = (U1, U2, U3) of holonomies obeying (3.2). The wave-function of a low-energy state

with a specific value of m ∈ M is thus supported on M(m).

In general, the moduli space M(m) is disconnected:

M(m) =
⋃

α

Mα(m) (3.4)

where α labels the different connected components. The rank of the commutant H ⊂ G of

U is locally constant on M. Denoting its value on the Mα component as rα, we have the

following formula [7 – 9, 14]:
∑

α

(rα + 1) = h∨
G, (3.5)

where h∨
G denotes the dual Coxeter number of G.

3.2 The abelian contribution

At a generic point on the moduli space component Mα(m), the Lie algebra h of the

commutant H ⊂ G of U = (U1, U2, U3) is isomorphic to u(1)rα , but on subspaces of

Mα(m), h may be non-abelian. For a given Lie algebra h, we let

Mh(m) =
⋃

a

Mh
a(m) (3.6)

denote the corresponding subspace of M(m), with the spaces Mh
a(m) being its connected

components. In general, h will contain a semi-simple term s and an abelian term u(1)r for

some non-negative integer r. We will now analyze the contributions to the energy from the

degrees of freedom associated with the abelian u(1)r term. We let tr denote the restriction

of the Killing form Tr of Lie G to this term.

The electric contribution to the energy is proportional to tr(EiEi), where the electric

field strength components E1, E2 and E3 are the canonical conjugates of (the u(1)r part

of) the holonomies U1, U2, and U3. The wave function of a low-energy state supported on

Mh(m) must thus be constant on each connected component Mh
a(m). (It should be noted

that these components are compact.)

The 6 scalar fields Φ give a contribution to the energy proportional to tr(ΠΠ), where

Π are the 6 canonical conjugates of the covariantly constant modes of the Φ. (The non-

constant modes are not relevant at low energies.) In the quantum theory, there is a con-

tinuum of ”eigenstates” labelled by the d = 6r arbitrary real eigenvalues of (the u(1)r part

of) the Π operators. (Actually, only the r = 0 case would correspond to true normalizable

eigenstates.) These states are eigenstates of the tr(ΠΠ) term in the Hamiltonian, which

can thus be made arbitrarily small by taking a wave function supported sufficiently close

to zero in Π-space. We refer to this as a rank r continuum of states.

– 9 –
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Finally, we need to quantize the covariantly constant modes of the spinor fields Ψ±.

(Again, the non-constant modes are not relevant at low energies.) These modes are their

own canonical conjugates, and give no contribution to the energy. But they give rise to a

further finite degeneracy of the low-energy states.

3.3 The semi-simple contribution

It remains to consider the degrees of freedom associated with the semi-simple term s in the

unbroken Lie algebra h. (The degrees of freedom associated with broken generators are

massive, and thus irrelevant at low energies.) It is then convenient to use the canonically

normalized variables X = g−1A, where g is the coupling constant, instead of the connection

A. In the weak coupling limit g → 0, the variables X may then be regarded as non-

compact scalars (like the true scalar fields Φ), and the low energy effective theory for

the degrees of freedom associated with the semi simple terms s in h is given by s matrix

quantum mechanics with 16 supercharges. (The latter theory is most easily described as

the dimensional reduction to 0 + 1 dimensions of the four dimensional N = 4 Yang-Mills

theory with the Lie algebra of the gauge group given by s.) This matrix quantum mechanics

does not have a mass gap, but is believed to have a finite-dimensional linear space Vs of

normalizable zero-energy bound states at threshold. In terms of the connection A = gX,

the wave functions of these states are localized on the subspace Mh(m) in the g → 0 limit.

In the matrix quantum mechanics, there is also a continuum of states with arbitrarily low

energies, but this matches on to the spectrum of states associated with a smaller unbroken

semi simple Lie algebra s′.

The dimension of the space Vs of bound states in the matrix quantum mechanics is

crucial for our discussion, and we will now briefly review the current knowledge concerning

this issue: This problem is notoriously difficult since the theory does not have a mass gap

and the bound states are at threshold. It is enough to consider the case of a simple Lie

algebra s; for a semi simple s, Vs is given by the tensor product of the spaces corresponding

to its simple terms. In the case of s ≃ su(n), the duality between IIA string theory and

M-theory implies that there should be precisely one such state [10]. Considerations of

the Witten index indicate that this is indeed true [15]. Another approach, leading to the

same result, is obtained by mass deforming the N = 4 theory, determining the number of

vacua in the resulting N = 1∗ theory, and then taking the massless limit [16]. For other

simple Lie algebras s, the situation is less clear. First of all, one does not have a clearcut

prediction from string theory. Also, the direct Witten index approach seems much more

difficult than for s ≃ su(n) (see e.g. [17] and references therein). On the other hand, the

mass-deformation method can be generalised in a fairly straightforward manner, and leads

to a mathematically completely well-defined problem. The result of this calculation is a
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linear space V ∗
s of vacuum states of dimension [11]

dimV ∗
s =







1 for s ≃ su(n)

number of partitions of n into distinct odd parts for s ≃ so(n)

number of partitions of 2n into distinct even parts for s ≃ sp(2n)

3, 6, 11 for s ≃ e6,7,8

4 for s ≃ f4
2 for s ≃ g2

(3.7)

A priori, it is not clear that Vs ≃ V ∗
s , but as we will see, S-duality lends very strong support

to this conjecture. In this context, it should be noted that none of the above approaches

to determine Vs relies on S-duality.

For a given unbroken Lie algebra h with semi-simple terms s, there is one copy of

the vector space Vs associated with each component Mh
a(m) of Mh(m). Altogether, the

non-abelian degrees of freedom may thus be described at low energies by a state in a finite

dimensional vector space

Vh =
⊕

a

Vs, (3.8)

given by a direct sum of spaces isomorphic to Vs.

3.4 The discrete abelian electric flux

Let now

ω = (ω1, ω2, ω3) ∈ Ω = Hom(π1(T
3), π1(Gadj)) ≃ C3 (3.9)

be the restriction of a large gauge transformation ω̃ ∈ Ω̃ to the curves c1, c2, and c3. It

acts on the holonomies according to

U = (U1, U2, U3) 7→ ωU = (ω1U1, ω2U2, ω3U3) (3.10)

(and trivially on the scalar and spinor fields since these are sections of ad(P )). Obviously,

the commutants in G of U and ωU agree, so (with h still denoting the Lie algebra of the

commutant) we see that ω acts by permutation on the different connected components

Mh
a(m) of Mh(m). This action induces a linear action of ω on the finite dimensional

vector space Vh introduced in the previous subsection. These transformations for all ω ∈ Ω

may be simultaneously diagonalized, i.e. Vh decomposes as a direct sum of one-dimensional

subspaces transforming as different characters e ∈ E = Hom(Ω, U(1)).

A compact description of the low energy spectrum is now as follows: For every choice

of m ∈ M = H2(T 3, C), e ∈ E = Hom(Ω, U(1)), and r = 0, 1, . . . , rankG, there is a

multiplicity multrG(m, e) of rank r continua with discrete fluxes m and e. The S-duality

conjecture implies that

multrG(m, e) = multr
G(m, e + ∆)

multrG(m, e) = multr
G∨

(e,−m), (3.11)

where ∆ ∈ E is the spectral flow character and G∨ is the simply connected cover of the

dual G∨ of the simply connected group G. (In fact, G∨ = G in all cases, except when

G = Spin(2n+1), for which G∨ = Sp(2n) and vice versa.)
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4. The G = SU(n) case

We will now carry out the programme described above for the case when G = SU(n). The

center C ⊂ G consists of n × n matrices of the form c1ln with cn = 1, and is isomorphic to

the cyclic group Zn. We will identify the magnetic and electric ’t Hooft fluxes, as well as

(the restrictions to closed curves of) large gauge transformations, with elements of (Zn)3,

i.e.

m = (m23,m31,m12) ∈ (Zn)3

e = (e1, e2, e3) ∈ (Zn)3

ω = (ω1, ω2, ω3) ∈ (Zn)3 . (4.1)

In this notation, the commutation relations of the holonomies Ui, i = 1, 2, 3 are written as

UiUj = e2πimij/n UjUi , (4.2)

where mij = −mji, and transform as

Ui 7→ e2πiωi/nUi . (4.3)

A magnetic ’t Hooft flux m = (m23,m31,m12) is related by a suitable transformation

in the SL(3, Z) mapping class group of T 3 to the flux

m = (0, 0, u) mod n, (4.4)

where u = gcd(m23,m31,m12, n), so we need only consider m of this form. We index the

connected components of the moduli space M(m) =
⋃

α Mα(m) of flat connections by [13]

α ∈ {0, 1, . . . , v − 1}, (4.5)

where v = n/u. On the component Mα(m), the holonomies are given by

Ui = Mi ⊗ V α
i , (4.6)

where the Mi are arbitrary commuting SU(u) matrices, and the V α
i are some fixed v × v

matrices that fulfill the same commutation relations as the Ui. We may for example choose

V α
1 = diag

(

eiπ(−v+1)/v , eiπ(−v+3)/v , . . . , eiπ(v−1)/v
)

V α
2 =









0 1 · · · 0
... 0

. . .
...

0 0 1

1 0 . . . 0









(4.7)

V α
3 = diag

(

e2πiα/n, e2πiα/n, . . . , e2πiα/n
)

.

The matrices Mi break SU(u) to a maximal subgroup H. The Lie algebra h of H is

of the form

h ≃ s ⊕ u(1)k−1 ≃ su(u1) ⊕ . . . ⊕ su(uk) ⊕ u(1)k−1, (4.8)
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where k is a positive integer and u1 + . . . + uk = u. (We see that rα = rankH = u − 1

independent of α, so that indeed
∑

α(rα+1) = uv = n = h∨
SU(n).) To describe the structure

of the corresponding subspace Mh(m) ⊂ M(m) of the moduli space of flat connections,

we let w = gcd(u1, . . . , uk), (t1, . . . tk) = (u1/w, . . . , uk/w) and t = t1 + · · · tk = u/w. The

matrices Mi may then be conjugated to the form

Mi = Ni ⊗ 1lw , (4.9)

where the Ni are commuting elements of U(t) that break u(t) to the subalgebra su(t1) ⊕

. . . ⊕ su(tk) ⊕ u(1)k−1 and obey (det Ni)
w = 1. We identify detNi with an element of Zw,

which thus determines a component of the space of Ni matrices. For i = 1, 2, this also

determines a component of the space of Ui matrices. For U3, we need to take the choice of

α ∈ {0, . . . , v−1} into account, so these components are determined by an element of Zwv.

Altogether, we find that the connected components of the space Mh(m) =
⋃

a M
h
a(m) are

indexed by

a = (a1, a2, a3) ∈ Zw × Zw × Zwv. (4.10)

A large gauge transformation permutes these components as

a 7→ a + ω̄, (4.11)

where ω̄ = (ω̄1, ω̄2, ω̄3) ∈ Zw × Zw × Zwv is the image of ω = (ω1, ω2, ω3) ∈ (Zn)3.

Since the number of normalizable bound states at threshold in s ≃ su(u1)⊕ . . .⊕su(uk)

matrix quantum mechanics is (conjectured to be) one, there is a single state Ψh
a associated

with each component Mh
a(m). (As described in section three, this is actually a rank

r = k − 1 continuum of states, which is further labelled by 6r continuous parameters from

the abelian scalar fields and some discrete quantum numbers from the abelian spinor fields.)

The action of Ω on the components induces an action on the space V h spanned by the Ψh
a:

Ψh
a 7→ Ψh

a+ω̄ . (4.12)

For

e = (e1, e2, e3) ∈ tvZn × tvZn × tZn ⊂ (Zn)3 (4.13)

we define the linear combination

Ψ̂h
e =

∑

a

e−2πi(a1e1+a2e2+a3e3)/nΨh
a . (4.14)

It is easy to see that it transforms as the character e under large gauge transformations,

i.e.

Ψ̂h
e 7→ e2πi(ω1e1+ω2e2+ω3e3)/nΨ̂h

e , (4.15)

and that these states together span V h.

We may now describe the low-energy spectrum in an S-duality and SL(3, Z) covariant

form as follows: Let t be a divisor of n, and let t1 + · · · + tk = t be a partition of t into
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relatively prime parts, i.e. gcd(t1, . . . , tk) = 1. To these data is associated a rank r = k− 1

continuum of low-energy states for every value of m and e of the form

m = tm′

e = te′, (4.16)

where m′ ∈ (Zn)3 and e′ ∈ (Zn)3 are subject to the constraint that

t(m′ × e′) = t(m′
31e

′
3 − m′

12e
′
2,m

′
12e

′
1 − m′

23e
′
3,m

′
23e

′
2 − m′

31e
′
1) = 0. (4.17)

This S-duality covariant equation succinctly summarises the low-energy spectrum of the

theory. We stress that the S-duality of the spectrum was not a priori obvious.

5. The G = Spin(2n+1) and G = Sp(2n) cases

We will begin by describing some group theoretic facts for G = Spin(2n+1) and G =

Sp(2n). We will then interpret these in terms of orientifolds, before verifying the predictions

of S-duality.

5.1 G = Spin(2n+1)

The gamma matrices γi, i = 1, . . . , 2n + 1 obey the Clifford algebra

{γi, γj} = 2δij1l. (5.1)

The product γ[i1 . . . γik] is denoted as γi1...ik . The Lie algebra so(2n + 1) is then spanned

by the elements γij, and G = Spin(2n+1) is the corresponding simply connected group

obtained by exponentiation. Note that e.g (γ12)
2 = −1l so that exp(π

2 γ12) = γ12. The

center of G is C = {1l,−1l} ≃ {1,−1}.

For m = (m23,m31,m12) = (1, 1, 1), the moduli space of flat connections is of the form

M(m) = Mn(m) ∪Mn−3(m), (5.2)

where we have indexed the connected components by their rank rα. Note that
∑

α(rα+1) =

2n − 1 = g∨Spin(2n+1). On the Mn(m) component, the holonomies take the form (up to

conjugation)

U1 = exp

(
1

2

[

θ23
1 γ23 + · · · + θ2n,2n+1

1 γ2n,2n+1

])

U2 = exp

(
1

2

[

θ23
2 γ23 + · · · + θ2n,2n+1

2 γ2n,2n+1

])

(5.3)

U3 = exp

(
1

2
[θ23

3 γ23 + · · · + θ2n,2n+1
3 γ2n,2n+1

])

,

and on Mn−3(m),

U1 = γ1234 exp

(
1

2

[

θ89
1 γ89 + · · · + θ2n,2n+1

1 γ2n,2n+1

])

U2 = γ1357 exp

(
1

2

[

θ89
2 γ89 + · · · + θ2n,2n+1

2 γ2n,2n+1

])

(5.4)

U3 = γ1256 exp

(
1

2

[

θ89
3 γ89 + · · · + θ2n,2n+1

3 γ2n,2n+1

])

.
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For m = (1, 1,−1), we similarly have

M(m) = Mn−1(m) ∪Mn−2(m). (5.5)

Again,
∑

α(rα + 1) = 2n − 1. On Mn−1(m),

U1 = γ12 exp

(
1

2

[

θ45
1 γ45 + · · · + θ2n,2n+1

1 γ2n,2n+1

])

U2 = γ13 exp

(
1

2

[

θ45
2 γ45 + · · · + θ2n,2n+1

2 γ2n,2n+1

])

(5.6)

U3 = exp

(
1

2

[

θ45
3 γ45 + · · · + θ2n,2n+1

3 γ2n,2n+1

])

,

and on Mn−2(m),

U1 = γ12 exp

(
1

2

[

θ67
1 γ67 + · · · + θ2n,2n+1

1 γ2n,2n+1

])

U2 = γ13 exp

(
1

2

[

θ67
2 γ67 + · · · + θ2n,2n+1

2 γ2n,2n+1

])

(5.7)

U3 = γ1234 exp

(
1

2

[

θ67
3 γ67 + · · · + θ2n,2n+1

3 γ2n,2n+1

])

.

In all cases, if we consider the θ2k,2k+1
i to be defined modulo 2π, the Ui are well-defined

as elements of G/C. (The Ui would be well-defined as elements of G, if we consider the

θ2k,2k+1
i to be defined modulo 4π.)

Generically the unbroken Lie algebra is u(1)rα . However, when

(θ2k1,2k1+1
1 , θ2k1,2k1+1

2 , θ2k1,2k1+1
3 ) = ± . . . = ±(θ2kl,2kl+1

1 , θ2kl,2kl+1
2 , θ2kl,2kl+1

3 ), (5.8)

a term u(1)l is enhanced to u(l) ≃ su(l) ⊕ u(1). Furthermore, if the common value

±(θ1, θ2, θ3) of these l triplets belongs to the set

Θ = {(0, 0, 0), (0, 0, π), (0, π, 0), (0, π, π), (π, 0, 0), (π, 0, π), (π, π, 0), (π, π, π)}, (5.9)

there is a further enhancement of u(l) to so(2l) or so(2l + 1) depending on the component

in question:

(θ1, θ2, θ3) Mn((1, 1, 1)) Mn−3((1, 1, 1)) Mn−1((1, 1,−1)) Mn−2((1, 1,−1))

(0, 0, 0) so(2l + 1) so(2l) so(2l) so(2l + 1)

(0, 0, π) so(2l) so(2l + 1) so(2l) so(2l + 1)

(0, π, 0) so(2l) so(2l + 1) so(2l + 1) so(2l)

(0, π, π) so(2l) so(2l + 1) so(2l) so(2l + 1)

(π, 0, 0) so(2l) so(2l + 1) so(2l + 1) so(2l)

(π, 0, π) so(2l) so(2l + 1) so(2l) so(2l + 1)

(π, π, 0) so(2l) so(2l + 1) so(2l + 1) so(2l)

(π, π, π) so(2l) so(2l + 1) so(2l) so(2l + 1)

(5.10)
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So possible unbroken algebras are of the form

h ≃ s ⊕ u(1)r ≃ so(p1) ⊕ . . . ⊕ so(p8) ⊕ su(n1) ⊕ . . . ⊕ su(nr) ⊕ u(1)r, (5.11)

where

p1 + · · · p8 + 2n1 + · · · + 2nr = 2n + 1. (5.12)

For m = (1, 1, 1) (m = (1, 1,−1)), one or seven (three or five) of the p1, . . . , p8 are odd.

5.2 G = Sp(2n)

The group G = Sp(2n) consists of all 2n×2n unitary matrices U that satisfy UT JU = J ,

where J2 = −1l and JT = −J . The center is C = {1l2n,−1l2n} ≃ {1,−1}. We choose the

2n × 2n matrix J as

J = iσy ⊗ 1ln =

n terms
︷ ︸︸ ︷

iσy ⊕ . . . ⊕ iσy, (5.13)

where σy is a Pauli sigma matrix:

σx =

(

0 1

1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0

0 −1

)

. (5.14)

For m = (1, 1, 1), the moduli space of flat connections has a single connected component

of rank r = n, so that r + 1 = n + 1 = g∨Sp(2n). The holonomies are

U1 = exp(iθ1
1σz) ⊕ . . . ⊕ exp(iθn

1 σz)

U2 = exp(iθ1
2σz) ⊕ . . . ⊕ exp(iθn

2 σz)

U3 = exp(iθ1
3σz) ⊕ . . . ⊕ exp(iθn

3 σz) , (5.15)

where the θk
i are defined modulo 2π.

Generically, the unbroken Lie algebra is u(1)n. However, when

(θk1

1 , θk1

2 , θk1

3 ) = ± . . . = ±(θkl

1 , θkl

2 , θkl

3 ), (5.16)

a term u(1)l is enhanced to u(l) ≃ su(l) ⊕ u(1). And if the common value of these triplets

is an element of the set Θ defined in (5.9), there is a further enhancement of u(l) to sp(2l).

So possible unbroken algebras are of the form

h ≃ s ⊕ u(1)r ≃ sp(2l1) ⊕ . . . ⊕ sp(2l8) ⊕ su(n1) ⊕ . . . ⊕ su(nr) ⊕ u(1)r, (5.17)

where

l1 + · · · + l8 + n1 + · · · + nr = n. (5.18)

For m = (1, 1,−1), the holonomies are of the form

U1 = iσz ⊗ u1

U2 = iσx ⊗ u2 (5.19)

U3 = 1l2 ⊗ u3,
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where u1, u2, and u3 are commuting elements of SO(n), SO(n), and O(n) respectively.

Thus

M(m) = M+(m) ∪M−(m), (5.20)

where the two components are distinguished by det u3 = ±1. For n even, M+(m) has rank

r+ = n/2 and holonomies

U1 = iσz ⊗
(

exp(iθ1
1σy) ⊕ . . . exp(iθ

n/2
1 σy)

)

U2 = iσx ⊗
(

exp(iθ1
2σy) ⊕ . . . exp(iθ

n/2
2 σy)

)

U3 = 1l2 ⊗
(

exp(iθ1
3σy) ⊕ . . . exp(iθ

n/2
3 σy)

)

, (5.21)

whereas M−(m) has rank r− = n/2 − 1 and

U1 = iσz ⊗
(

exp(iθ1
1σy) ⊕ . . . exp(iθ

n/2−1
1 σy) ⊕ 1l2

)

U2 = iσx ⊗
(

exp(iθ1
2σy) ⊕ . . . exp(iθ

n/2−1
2 σy) ⊕ 1l2

)

U3 = 1l2 ⊗
(

exp(iθ1
3σy) ⊕ . . . exp(iθ

n/2−1
3 σy) ⊕ σz

)

. (5.22)

Thus, (r+ + 1) + (r− + 1) = n + 1 = g∨Sp(2n). For n odd, both M+(m) and M−(m) have

rank r+ = r− = (n − 1)/2, so that again (r+ + 1) + (r− + 1) = n + 1 = g∨Sp(2n). The

holonomies are

U1 = iσz ⊗
(

exp(iθ1
1)σy ⊕ . . . exp(iθ

(n−1)/2
1 σy) ⊕ 1l1

)

U2 = iσx ⊗
(

exp(iθ1
2σy) ⊕ . . . exp(iθ

(n−1)/2
2 σy) ⊕ 1l1

)

U3 = 1l2 ⊗
(

exp(iθ1
3σy) ⊕ . . . exp(iθ

(n−1)/2
3 σy) ⊕ 1l1

)

, (5.23)

and

U1 = iσz ⊗
(

exp(iθ1
1σy) ⊕ . . . exp(iθ

(n−1)/2
1 σy) ⊕ 1l1

)

U2 = iσx ⊗
(

exp(iθ1
2σy) ⊕ . . . exp(iθ

(n−1)/2
2 σy) ⊕ 1l1

)

U3 = 1l2 ⊗
(

exp(iθ1
3σy) ⊕ . . . exp(iθ

(n−1)/2
3 σy) ⊕−1l1

)

, (5.24)

respectively. In all cases, the θk
1 and θk

2 are defined modulo π, whereas θk
3 is defined modulo

2π.

Generically, the unbroken Lie algebra is u(1)rα . Again, enhancement of a term u(1) to

u(l) ≃ su(l) ⊕ u(1) occurs when

(2θk1

1 , 2θk1

2 , θk1

3 ) = ± . . . = ±(2θkl

1 , 2θkl

2 , θkl

3 ), (5.25)
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and further enhancement occurs if the common value (2θ1, 2θ2, θ3) of these triplets is an

element of the set Θ:

(2θ1, 2θ2, θ3) M+,n/2 M−,n/2−1 M+,(n−1)/2 M−,(n−1)/2

(0, 0, 0) so(2l) so(2l + 1) so(2l + 1) so(2l)

(0, 0, π) so(2l) so(2l + 1) so(2l) so(2l + 1)

(0, π, 0) sp(2l) sp(2l) sp(2l) sp(2l)

(0, π, π) sp(2l) sp(2l) sp(2l) sp(2l)

(π, 0, 0) sp(2l) sp(2l) sp(2l) sp(2l)

(π, 0, π) sp(2l) sp(2l) sp(2l) sp(2l)

(π, π, 0) sp(2l) sp(2l) sp(2l) sp(2l)

(π, π, π) sp(2l) sp(2l) sp(2l) sp(2l).

(5.26)

So for n even, possible unbroken algebras are of the form

h ≃ s ⊕ u(1)r ≃







so(2k1) ⊕ so(2k2) ⊕ sp(2l1) ⊕ . . . ⊕ sp(2l6)

⊕ su(n1) ⊕ . . . ⊕ su(nr) ⊕ u(1)r

or

so(2k1 + 1) ⊕ so(2k2 + 1) ⊕ sp(2l1) ⊕ . . . ⊕ sp(2l6)

⊕ su(n1) ⊕ . . . ⊕ su(nr) ⊕ u(1)r,

(5.27)

whereas for n odd,

h ≃ s ⊕ u(1)r ≃ so(2k1 + 1) ⊕ so(2k2) ⊕ sp(2l1) ⊕ . . . ⊕ sp(2l6)

⊕ su(n1) ⊕ . . . ⊕ su(nr) ⊕ u(1)r. (5.28)

In both cases

k1 + k2 + l1 + · · · + l6 + n1 + · · · + nr = rα, (5.29)

where rα is the rank of the component in question.

5.3 Correspondence with orientifolds

Above we gave a general discussion of the holonomies associated with the various moduli

spaces. There is convenient way to keep track of the combinatorics of which holonomies

are possible. As this alternative method is quite powerful, we will describe it briefly.

It can be shown that the possible holonomies are in one-to-one correspondence with

certain D-brane configurations on an orientifold of an auxiliary three torus. The partic-

ulars of these orientifolds have been worked out in [7, 18]. Some of these orientifolds are

inconsistent as string theories (have anomalies), but that is not relevant here as we are only

interested in the field theory limit. For a discussion of string theory orientifolds, see [19].

The orientifold action in question is a Z2 action on the auxiliary three torus and has

eight fixed points (see [7, 18] for more details). At each of these eight fixed points sits an

orientifold plane (O plane). These can be of two types, O− and O+. Exactly which types

occur depend on the gauge group and the values of mij . On these orientifolds one then

places a certain number of D-branes, the number of which depend on the particular case

and will be described below. As usual, enhanced gauge symmetry is obtained when several
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branes are on top of each other. Away from the orientifold planes one gets enhanced u(n)

symmetry when n branes are on top of each other (the n mirror branes are also coincident).

When 2n branes (n branes and their n mirrors) are on top of an O+ plane one gets sp(2n)

enhancement and when n branes are located at an O− plane one gets so(n) symmetry. The

possible gauge groups one obtains in this way are in one-to-one correspondence with the

possible unbroken gauge groups in the gauge theory. Note that the O− planes can support

single (‘fractional’) branes which are stuck at the O− plane. From the above discussion it

follows that if we want no abelian u(1) factors in the unbroken gauge symmetry then all

the branes need to lie at the eight orientifold planes. Here we will focus on these special

points in the moduli space. But one can also discuss the other points in the moduli space

using this language.

Spin(2n+1). For Spin(n) with m = (1, 1, 1) the relevant Z2 orientifold contains eight

O− planes located at the eight fixed points of the Z2 action [7]. One may visualise the

eight O planes as lying at the corners of a cube; this picture will be useful later. Each

of the O− planes can support single (‘fractional’) D-branes. Two fractional branes are

equivalent to a brane-mirror pair and can be moved off the O− plane. In order for the

gauge group to be Spin(n) (and not just SO(n) or Pin(n)) one requires that the first and

second Stiefel-Whitney classes vanish [7]. The solution to this requirement for Spin(2n+1)

shows that there are two components of the moduli space [7]: either one fixed orientifold

plane (‘the origin’) is occupied by a fractional brane, or the other seven orientifold planes

are. In addition, in the former case one also has 2n branes (n brane-mirror pairs), and

in the latter case 2n−6 branes, which should be distributed among the eight orientifolds

planes (in pairs).

The brane configurations are translated into expressions for the holonomies as follows.

A fractional brane located at one of the eight orientifold planes corresponds to the following

eight three vectors (one may visualise these eight possibilities as the corners of a cube):

1 γk 1 γk 1 γk 1 γk

1 1 γk γk 1 1 γk γk

1 1 1 1 γk γk γk γk

(5.30)

Here γk denotes one of the usual gamma matrices. The index k is correlated with the index

labelling the various branes (here we view a brane-mirror pair as two fractional branes).

The first entry in (5.30) corresponds to the special orientifold plane, ‘the origin’, used above

to describe the two components of the moduli space. The building blocks (5.30) can be

used to construct the holonomies. The method should be clear from the following example.

For instance, if (in Spin(7)) there are 3 branes (k = 1, 2, 3) at the first orientifold plane

and four (k = 4, 5, 6, 7) at the fifth one gets:

U1 = ±1

U2 = ±1 (5.31)

U3 = γ4γ5γ6γ7 .
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Here we have indicated that in addition to the above rules one can also have overall ± factors

in front of the three holonomies. Some of these may be removable by gauge transformations.

In the above example the sign ambiguities in front of U3 can be removed by conjugation with

the Spin(7) group element γ1γ4. More generally, if only one O plane is occupied no signs

can be removed, if two are occupied (by at least one brane each) one sign can be removed,

and if three are occupied, two signs can be removed. If four are occupied and lie on a plane

intersecting the cube with the eight corners containing the O planes, two signs can be re-

moved, otherwise all three signs can be removed. If five or more points are occupied all signs

can be conjugated away. This discussion about which signs can be removed by gauge trans-

formations is important for the determination of which values of e = (e1, e2, e3) that occur.

Acting with a large gauge transformation of the form ω = (ω1, ω2, ω3) where ωi, say, is the

non-trivial element of the centre, changes the sign of Ui. Therefore, if the sign change can

be undone by a gauge transformation one finds that the corresponding wave function has

ei = 1. In particular, in the second component of the moduli space all signs can be conju-

gated away and hence all states have e = (1, 1, 1). In the above example (5.31) there are four

states and the corresponding values of e are: (1, 1, 1), (−1, 1, 1), (1,−1, 1), and (−1,−1, 1).

It is easy to see that the gauge enhancement that one obtains from n branes at an O−

plane is generated by the Lie algebra elements γij , where i, j lie in the corresponding index

range. In the example above (5.31), γij (i, j = 1, . . . , 3) generate so(3), whereas one gets

so(4) from γij (i, j = 4, . . . , 7).

The next case to consider is Spin(2n+1) with m = (1, 1,−1) (or any of its six images

under the SL(3, Z) symmetry). Since we can no longer lift to Spin(2n+1) because of the

obstruction caused by m we want the second Stiefel-Whitney class to be non-vanishing

(note that we will continue to write the holonomies in the covering group Spin(2n+1)).

This case is therefore often referred to as the case ‘without spin structure’. We still require

the first Stiefel-Whitney class to vanish though since otherwise we get O(2n+1) instead of

SO(2n+1) ≡ Spin(2n+1)/Z2. The solution in the orientifold language is that (see e.g. [18])

three orientifold planes need to be occupied by a fractional brane. The three O planes need

to be such that, when viewing the positions of the eight O planes as the corners of a cube,

neither can be at the origin and they need to lie in a plane through the origin. The various

possible planes one selects are permuted by SL(3, Z) and correspond to the different possible

values of m. The complement of five fractional branes also gives a solution and there are

therefore two components of the moduli space. On the first (second) component of the

moduli space one has in addition to the fractional branes also 2n−2 (2n−4) branes leading

to rank n−1 (n−2). In particular, when m = (1, 1,−1), the O planes corresponding to

columns two through four (or one and five through eight) in (5.30) should have fractional

branes; in other words, the total number of branes at these O planes should be odd. As an

example (in Spin(7)/Z2) consider three branes at the second O plane, three at the third

and one at the fourth giving:

U1 = γ1γ2γ3γ7

U2 = γ4γ5γ6γ7 (5.32)

U3 = ±1 .
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Note that U1U2 = −U2U1 as expected. This configuration has so(3)⊕ so(3) gauge enhance-

ment. We have indicated in (5.32) that the sign ambiguities in front of U1 and U2 can be

removed by gauge transformations. The associated two states therefore have e = (1, 1, 1)

and (1, 1,−1).

Sp(2n). In the case of Sp(2n) with m = (1, 1, 1) the relevant orientifold contains eight

O+ planes [18] on which 2n D-branes should be distributed. Only brane-mirror pairs can

be located at the orientifold planes and each such pair correspond to one of the following

eight building blocks:

1l2 −1l2 1l2 −1l2 1l2 −1l2 1l2 −1l2
1l2 1l2 −1l2 −1l2 1l2 1l2 −1l2 −1l2
1l2 1l2 1l2 1l2 −1l2 −1l2 −1l2 −1l2

(5.33)

There is only one component of the moduli space and the maximal rank of the unbroken

gauge group is n. The large gauge transformations act by permuting the above eight

possibilities. Depending on the exact configuration, this action may be possible to undo

by a gauge transformation. We will return to this point below. As an explicit example,

consider the Sp(6) theory with two branes at the first O plane and four at the sixth leading

to:

U1 = diag(1l2,−1l4)

U2 = diag(1l2, 1l4) (5.34)

U3 = diag(1l2,−1l4) .

The unbroken gauge symmetry is sp(2)⊕sp(4). Under the action of large gauge transforma-

tions, the states corresponding to the above holonomies mix with the states corresponding

to the other 55 ways to place two branes at one orientifold plane and four at another.

Diagonalising the action leads to the result that, within this class of states, each of the

eight possible values of e occurs seven times.

When m is non-trivial, e.g. m = (1, 1,−1), the orientifold has two O−planes and six O+

planes [18]. The building blocks of the holonomies are for example as follows. Fractional

branes located at the two O− planes correspond to

iσz iσz

iσx iσx

1l2 −1l2

(5.35)

Brane-mirror pairs at the six O+ planes correspond to:

iσz ⊗ iσy iσz ⊗ iσy iσz ⊗ iσy iσz ⊗ iσy iσz ⊗ 1l2 iσz ⊗ 1l2
iσx ⊗ iσy iσx ⊗ iσy iσx ⊗ 1l2 iσx ⊗ 1l2 iσx ⊗ iσy iσx ⊗ iσy

1l4 −1l4 1l4 −1l4 1l4 −1l4

(5.36)

Note that combining two fractional branes of one of the above types (5.35) give the re-

maining two types, completing the pattern in (5.36).
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There are two components of the moduli space. When n is even, either both O− planes

are each occupied by a fractional brane, or neither of them are. In addition, one has n−2

(n) branes which should be placed (in pairs) at the eight O planes. Note that the total

number of branes is only half the number compared to the m = (1, 1, 1) case. When n is

odd, one or the other of the O− planes is occupied by a fractional brane. In addition, one

has n−1 branes which should be placed (in pairs) at the eight O planes.

From the above expressions (5.35) and (5.36), it is clear that the signs in front of U1

or U2 can always be removed by conjugation with a suitable group element.

As an example, consider the Sp(6) theory with three branes at one of the two O−-planes

leading to:

U1 = diag(iσz, iσz , iσz) = iσz ⊗ 1l3
U2 = diag(iσx, iσx, iσx) = iσx ⊗ 1l3
U3 = ±diag(1l2, 1l2, 1l2) = ±1l2 ⊗ 1l3 .

(5.37)

The unbroken gauge symmetry is so(3), since any Lie algebra element of the form 1l2 ⊗ A

commutes with the above expressions and such elements belong to the sp(6) Lie algebra pro-

vided that AT = −A (in this sector J = iσy ⊗1l3). The ± ambiguity in (5.37) distinguishes

the two O− planes, which consequently are interchanged by large gauge transformations.

(When viewing the orientifold planes as the corners of a cube, the action of ω3 has a ge-

ometric meaning: it simply corresponds to reflection in the plane parallel to z = 0 that

divides the cube into two halves.) The two states corresponding to (5.37) therefore have

e = (1, 1, 1) and e = (1, 1,−1).

5.4 S-duality

We are now ready to investigate the S-duality properties of the low-energy spectrum. As

several ingredients enter the analysis, it is helpful to first consider some explicit examples

before moving on to the general case. In particular, we will begin by analyzing the zero-

dimensional continua, where the unbroken Lie algebra has no abelian terms.

Spin(2n + 1). When m = (1, 1, 1), there is a trick one can use to evaluate the spectrum

of values of e: It must decompose into representations of SL(3, Z). The relevant represen-

tations are

R1 = {(1, 1, 1)}

R7 = {(1, 1,−1), (1,−1, 1), (1,−1,−1), (−1, 1, 1),

(−1, 1,−1), (−1,−1, 1), (−1,−1,−1)}. (5.38)

Furthermore, the number of states with e = m = (1, 1, 1) should be the same in the

Spin(2n + 1) and SO(2n + 1) = Spin(2n + 1)/Z2 theories. The number of states in the

SO(2n + 1) theory is easy to determine: the overall sign ambiguities in the Ui’s are absent

and all states belong to R1, i.e. they have e = (1, 1, 1). As an example we list the result
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for G = Spin(7):

h e

so(7) R1 ⊕ R7

so(6) 7R1 ⊕ 3R7

so(4) ⊕ so(3) 7R1 ⊕ 3R7

∅ R1.

(5.39)

When m = (1, 1,−1) the situation is similar. It is important to note that, in the

orientifold setup, only the component with three fractional branes can lead to non-trivial

e’s (cf. the discussion in the previous subsection). Furthermore, it is only in the U3 direction

that one can have a non-trivial ei. If, on the first component of the moduli space, one only

occupies the three O planes containing the fractional branes, one gets as many e = (1, 1, 1)

as e = (1, 1,−1) states. With a further O plane occupied, one gets an e = (1, 1,−1) state

plus an e = (1, 1, 1) state when the fourth O plane is at the origin, and only an e = (1, 1, 1)

state if one of the other O planes is occupied. Using these results we get in the G = Spin(7)

case:
h e

so(5) 3 (1, 1, 1) ⊕ 3 (1, 1,−1)

so(3) ⊕ so(3) 3 (1, 1, 1) ⊕ 3 (1, 1,−1)

so(4) 5 (1, 1, 1) ⊕ (1, 1,−1)

so(3) 5(1, 1, 1)

(5.40)

Sp(2n). The determination of the possible unbroken subgroups and values of e is similar

to the Spin(2n+1) case. As an example, when G = Sp(6) and m = (1, 1, 1), we get:

h e

sp(6) R1 ⊕ R7

sp(4) ⊕ sp(2) 7R1 ⊕ 7R7

sp(2) ⊕ sp(2) ⊕ sp(2) 7R1 ⊕ 7R7

(5.41)

When m = (1, 1,−1) only e3 can be non-trivial as we saw before. For G = Sp(6) we find:

h e

so(3) (1, 1, 1) ⊕ (1, 1,−1)

sp(2) 6 (1, 1, 1) ⊕ 6 (1, 1,−1)

(5.42)

As we described in earlier sections, S-duality involves the transformation (e,m) 7→

(m,−e). It is sufficient to consider states with m = (1, 1,m3) and e = (1, 1, e3) and

thus there are four values of (m3, e3) to investigate. Supersymmetric quantum-mechanical

matrix systems associated with groups of rank less than or equal to two have a sin-

gle bound state. (This could be inferred by repeating the above analysis for the G =

Spin(5),Sp(4),Spin(3),Sp(2) cases). The above tables then show that S-duality determines

the number of bound states for supersymmetric so(7), so(6), and sp(6) matrix quantum

mechanics to be 1, 1, and 2 respectively.

There is one important lesson to be learned from this example: As we increase the

rank, the new unknown parameters are the number of bound states for sp(2n), so(2n+1)
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and so(2n) matrix quantum mechanics, but as S-duality imposes at least three independent

equations relating them, they will all be determined. Thus we have a consistent iterative

procedure which can be continued to arbitrarily high rank. In particular, we see that if an

S-dual solution exists, it is unique. However, it is clear that the above method involving

listing all possible unbroken subgroups quickly becomes very cumbersome. To find a more

efficient approach, we will simply use the Kac-Smilga conjectures (3.7) and check if they

are consistent with S-duality.

We recall from the previous subsection that for G = Spin(2n+1) the unbroken gauge

symmetries without abelian terms are always of the form
⊕8

i=1 so(ni), where
∑8

i=1 ni =

2n+1. On the different components of the moduli spaces a certain number of the ni’s are

odd and the rest even. The Kac-Smilga conjecture states that the number of bound states

in the supersymmetric so(n) matrix quantum mechanics is equal to the number of ways

to partition n into distinct odd parts, cf. (3.7). Combining these results gives the total

number of bound states, but it seems like a rather complicated combinatorial quantity to

calculate. However, we are not really interested in the actual number of bound states, but

only want to know if it agrees with the corresponding G = Sp(2n) quantity. Problems such

as this one are common in the theory of partitions, and one can use the powerful language

of generating functions to simplify the analysis. We first note that the number of ways to

partition ni into distinct odd parts is given by the coefficient of qni in the (formal) power

series expansion of

P (q) =

∞∏

k=1

(1 + q2k−1). (5.43)

It follows that the number of ways to partition 2ni into distinct odd parts is given by the

coefficient of q2ni in

Pe(q) =
1

2
[P (q) + P (−q)], (5.44)

and the number of ways to partition 2ni+1 into distinct odd parts is given by the coefficient

of q2ni+1 in

Po(q) =
1

2
[P (q) − P (−q)]. (5.45)

We can now write down the generating functions for the number of bound states in the

G = Spin(2n+1) theories for fixed (m, e). By using the SL(3, Z) symmetry it is sufficient

to restrict to the cases where only e3 and m3 can be non-trivial. The result is:

(e3,m3) Generating function

(1, 1) PoP
7
e + PeP

7
o = 1

128 [P (q)8−P (−q)8] + 7
64 [P (q)6P (−q)2−P (−q)6P (q)2]

(1,−1) P 3
o P 5

e + P 3
e P 5

o = 1
128 [P (q)8−P (−q)8] − 1

64 [P (q)6P (−q)2−P (−q)6P (q)2]

(−1, 1) PoP
3
e = 1

16 [P (q)4−P (−q)4] + 1
8 [P (q)3P (−q)−P (−q)3P (q)] (5.46)

(−1,−1) P 3
o Pe = 1

16 [P (q)4−P (−q)4] − 1
8 [P (q)3P (−q)−P (−q)3P (q)] .

The fact that only four P ’s occur when e3 6= 1 follows from the fact that when more

than four orientifold planes are occupied one necessarily has e = (1, 1, 1). In summary,

the coefficient in front of q2n+1 in the formal Taylor expansion of the expressions in (5.46)
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gives the number of bound states in the G = Spin(2n+1) theories with the corresponding

(e3,m3) values.

On the G = Sp(2n) side, a similar analysis can be performed. When m = (1, 1, 1),

possible unbroken Lie algebras without abelian terms are of the form
⊕8

i=1 sp(2ni) with
∑8

i=1 2ni = 2n. The Kac-Smilga conjecture states that the number of bound states in

the sp(2ni) theory is equal to the number of ways one can partition 2ni into distinct even

integers, which in turn equals the coefficient of q2ni in

Q(q) =

∞∏

k=1

(1 + q2k). (5.47)

Large gauge transformations act by permuting the eight O+ planes. If this action were

free, the number of states with e = (1, 1, 1) in the Sp(2n) theory would be given by the

coefficient of q2n in 1
8Q(q)8. However, the action is not free, as for certain configurations it

can be undone by a gauge transformation. More precisely, if the states arise from partitions

occurring in pairs, then the action is not free and there are more states with e = (1, 1, 1)

than one would naively expect. The generating function for such ‘paired’ states is Q(q2)4.

Taking this into account, one is lead to the expressions that are summarised in the table

below, where we also multiplied the generating function by an overall factor of q to facilitate

the later comparison with the Spin(2n+1) expressions. Note that with m = (1, 1, 1),

summing over all possible e gives q Q(q)8 as required. When m = (1, 1,−1), the unbroken

gauge groups without abelian factors are of the form so(n1) ⊕ so(n2)
⊕6

i=1 sp(2li). Here

n1 and n2 can be both even or odd, depending on the particular component of the moduli

space. Again one can write down the generating functions for the number of states. We

saw above that when m = (1, 1,−1), only ω3 has a non-trivial action, so only e3 can

be non-trivial (without invoking the SL(3, Z) symmetry). As for m = (1, 1, 1) there are

extra correction terms since the large gauge transformations do not always act freely.

Furthermore, to compensate for the fact that the total number of branes is n and not 2n,

we let q → q2 in the resulting function. We also multiply by an overall factor of q. The

table below summarise the results:

(e3,m3) Generating function

(1, 1) 1
8q Q(q)8 + 7

8q Q(q2)4

(−1, 1) 1
8q Q(q)8 − 1

8q Q(q2)4

(1,−1) 1
2qP (q2)2Q(q2)6 + 1

2qP (q4)Q(q4)3 (5.48)

(−1,−1) 1
2qP (q2)2Q(q2)6 − 1

2qP (q4)Q(q4)3 .

In summary, the coefficient of q2n+1 in the formal Taylor expansion of the expressions

in (5.48) gives the number of bound states in the G = Sp(2n) theories with the corre-

sponding (e3,m3) values.

S-duality now amounts to the statement that the above generating functions should
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agree under the transformation (e,m) 7→ (m,−e). Explicitly this requires:

q
∞∏

k=1

(1 + q2n)8
?
=

1

16

[ ∞∏

k=1

(1 + q2k−1)8 −
∞∏

k=1

(1 − q2k−1)8
]

q

∞∏

k=1

(1 + q4n)4
?
=

1

8

∞∏

k=1

(1 − q4k−2)2
[ ∞∏

k=1

(1 + q2k−1)4 −
∞∏

k=1

(1 − q2k−1)4
]

q

∞∏

k=1

(1 + q2k)2(1 + q4n)4
?
=

1

8

[ ∞∏

k=1

(1 + q2k−1)4 −
∞∏

k=1

(1 − q2k−1)4
]

(5.49)

q

∞∏

k=1

(1 + q4k)(1 + q8k)2
?
=

1

4

∞∏

k=1

(1 − q4k−2)

[ ∞∏

k=1

(1 + q2k−1)2 −
∞∏

k=1

(1 − q2k−1)2
]

These complicated expressions can be rewritten in perhaps more familiar form by recalling

the infinite product expansions of the theta functions (theta constants),

θ2(q) = 2q1/4
∞∏

k=1

(1 − q2k)(1 + q2k)2 ,

θ3(q) =

∞∏

k=1

(1 − q2k)(1 + q2k−1)2 , (5.50)

θ4(q) =

∞∏

k=1

(1 − q2k)(1 − q2k−1)2 .

Using these expressions and multiplying the above expressions by some overall factors we

see that the first equation in (5.49) can be rewritten as

θ2(q)
4 = θ3(q)

4 − θ4(q)
4 , (5.51)

which is exactly the theta function version of Jacobi’s famous aequatio identica satis ab-

strusa! Similarly the second and third equations can be reformulated as

2 θ2(q
2)2 = θ3(q)

2 − θ4(q)
2 , (5.52)

which is a known identity among the theta functions. Finally the last equation in (5.49)

can be rewritten as

2 θ2(q
4) = θ3(q) − θ4(q) , (5.53)

which again is a known identity among theta functions.

To conclude, we have shown that the spectrum of bound states in the G = Spin(2n+1)

and G = Sp(2n) theories for any n is S-duality invariant provided the number of bound

states in supersymmetric matrix quantum mechanics agree with the Kac-Smilga conjec-

ture [11], and vice versa. The appearance of theta functions in the proof was probably

accidental, although there may be some string theory calculation that gives the above gen-

erating functions more directly and possibly also explains their form and modular proper-

ties.
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So far in this section, we have only discussed the S-duality properties of the genuine

bound states (continua of dimension zero in our terminology), but what about the higher-

dimensional continua? We can easily generalize the above discussion to incorporate also

these states. The general form of the unbroken gauge symmetry for the G = SO(2n+1)

and G = Sp(2n) theories is given by a sum of u(ni) ≃ su(ni) ⊕ u(1) terms and a semi-

simple algebra of the same form as before. If we introduce a second variable y to count the

number of u(1) terms, then since su(ni) matrix quantum mechanics has one bound state,

the generating function (naively) becomes
∏∞

k=1(
1

1−yq2k ) times the previous generating

function. This is actually the right result for almost all cases. However, in the G =

Spin(2n+1) theories with e 6= (1, 1, 1) there is a subtlety: Recall that one obtains u(1)l →

u(l) gauge enhancement when l of the (θ2k,2k+1
1 , θ2k,2k+1

2 , θ2k,2k+1
3 ) triples parametrizing the

holonomies are equal (modulo signs). Now if l is odd, the action of ωi on Ui can be undone

by shifting θab
i → θab

i +2π, so such states have e = (1, 1, 1). This can be taken into account

by letting q → q2 in
∏∞

k=1(
1

1−yq2k ). Fortunately, this is exactly the replacement that we did

in the generating function for the states with m = (1, 1,−1) in the G = Sp(2n) theories.

Thus, we conclude that S-duality works also for the continua of higher dimensions.
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